

Università DEGLI STUDI di Padova

Building an automatic point dendrometer

The most frequently used electromechanical linear position and displacement sensors for small distances make use of resistive, capacitive, inductive, magnetic, time-of-flight and pulse encoding transducers.

Among all, resistive sensors perhaps are the simplest and the cheapest, and hence widely employed as automatic band or point dendrometers. They consist of a linear potentiometer which slider movement generates changes in electric resistance. Hooking the potentiometer to a DC voltage excitation it produces a proportional voltage output that can be converted into millimetres by means an appropriate calibration coefficient.

Although the electric transduction is made by the contact of wipers on a resistive element, they generally have good accuracy and linearity, fair resolution, dynamic response, temperature coefficient and life and long-term reliability, but large hysteresis and poor resistance to shock and vibration.

Potentiometers can have a declared temperature coefficient of several hundred ppm °C¹ but used as voltage divider (fig. 1) this parameter is actually much lower and its effect is negligible.

Building a point dendrometer is quite easy just mounting a linear displacement sensor (i.e. Bourns) on an aluminium L-shaped support that is fixed at the trunk by a screw and a bolt (fig. 2). Furthermore, between the slider tip and the transducer housing, a spring must be mounted. In this way, the shaft will be held in place against the bark.

Fig. 2 – Point dendrometer

Fig. 3 - Calibration regression equation

The output can be easily recorded using any commercial data acquisition system (datalogger) and storing the data with a frequency set by the user, hourly or daily for instance.

Fig. 1 – Wiring of sensor as voltage divider

The output can be roughly converted into mm just on the base of the sensor electrical travel (ET):

$$mm = \frac{ET (mm)}{Exitation (mV)} output (mV)$$

However, a precise calibration is possible, a linear regression equation of several measured cursor shifts and corresponding outputs (fig. 3).

The regression slope (m) will be used as coefficient to convert the output: mm = slope(m) x output(mV)