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ABSTRACT

Russia, the country with the most forested area, significantly influences global climate, carbon, and water dy-
namics. In addition, a considerable part of the Russian forests is in remote regions with a low direct anthro-
pogenic disturbance, but at the same time, recently experiencing unprecedented warming. This combination of
factors makes Russia a hotspot for dendrochronological and dendroanatomical studies, providing a valuable
perspective on the consequences of climate change in a global context. Dendroanatomy is a powerful dendro-
chronological tool that provides a robust insight into xylem traits, their relation to climate conditions during tree-
rings formation, and the cell structure-function relationship over time (tree life span). Although dendroanatomy
in Russia has been gaining momentum lately, there is a long tradition of characterizing and modeling wood
anatomical traits, including the development of novel methodologies, hardware and software since the mid-20th
century. Unfortunately, in many cases, these advances have been hidden from the international readership
because most of them were published in Russian. This descriptive inventory presents an overview of den-
droanatomical studies carried out in Russia since the mid-20th century. It focuses on different periods and topics

to facilitate its accessibility and highlight its contribution to the global dendrochronological community.

1. Introduction

Russian forests represent ca. 20 % of the world’s forested area (FAO
and UNEP, 2020) and 60 % of the world’s boreal forests (Kayes and
Mallik, 2020). The Russian territory is experiencing an accelerated
climate change, with a temperature increase of 0.4 °C per decade over
the 1976-2021 period (Roshydromet, 2022), which is twice higher than
the global rates (IPPC, 2021). Under the expected global and regional
climate changes, the influence of climate on Russian forests will signif-
icantly increase (Shvidenko and Schepaschenko, 2013), affecting forest
productivity (Shuman et al., 2013) but also increasing climate-related
disturbances together with declining or dieback phenomena (Gauthier
et al., 2015). Therefore, Russia has become a hotspot for dendrochro-
nological studies to assess the ability of woody plants to adapt to rapidly
changing conditions across different biomes in the present time. How-
ever, the interest of Russian researchers in dendrochronology started

earlier and frequently aimed to provide a mechanistic understanding of
intra-annual tree-ring growth.

The focus of research has been changing along with the evolution of
Russian dendrochronology over time, from the description of tree-ring
growth and the understanding of the environmental effect on wood
structure and cell anatomy (e.g., Antonova et al., 1983; Vaganov and
Sviderskaya, 1990) to the modeling of the process which controls wood
formation (e.g., Vaganov et al., 2006) and the use of multiple tree ring
proxies (e.g., Kirdyanov et al., 2020a; Churakova et al., 2022, 2023).
Thus, a large number of tree ring-related studies have been conducted in
Russian forests, covering a wide range of topics, including tree growth
response to climate (e.g., Briffa et al., 1998; Hughes et al., 1999;
Vaganov et al., 1999; Esper et al., 2010; Kirdyanov et al., 2013; Hell-
mann et al., 2016; Kharuk et al., 2019; Arzac et al., 2021a, 2022),
paleoclimatology (e.g., Naurzbaev et al., 2002; Briffa et al., 2013;
Myglan et al., 2015; Biintgen et al., 2020; Hantemirov et al., 2021, 2022,
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2023), tree- and shrubline shifts (e.g., Shiyatov, 1962; Kammer et al.,
2009; Kirdyanov et al., 2012; Hagedorn et al., 2014; Devi et al., 2020;
Grigoriev et al., 2021), forest productivity estimates (e.g., Knorre et al.,
2006; Prokushkin et al., 2006), isotopes (e.g., Churakova et al., 2019,
2022), wood density (e.g., Camarero et al., 2017), wood chemistry (e.g.,
Kirdyanov et al., 2020a), tree growth modeling (e.g., Vaganov et al.,
2006; Shishov et al., 2016, 2023; Tychkov et al., 2019; Arzac et al.,
2021b), and other ecological applications as the impact of fires (e.g.,
Kirdyanov et al., 2020b; Kharuk et al., 2021), or a better understanding
of tree growth in permafrost zones (e.g., Bryukhanova and Kirdyanov,
2014; Fonti et al., 2018, 2021). Most of the effort has been carried out by
researchers from Moscow (Institute of Geography RAS), Yekaterinburg
(Institute of Plant and Animal Ecology), and Krasnoyarsk (Institute of
Forest and Siberian Federal University).

The study of wood anatomical traits adopting quantitative metrics
(QWA; von Arx et al, 2016) on dated tree-rings time series (den-
droanatomy') could potentially allow deciphering the complex
species-specific interaction mechanisms between internal and external
factors and their influence on xylem formation with a higher temporal
resolution (Vaganov and Terskov, 1977; Antonova and Stasova, 1993;
Benkova and Benkova, 2006; Vaganov et al., 2006; Babushkina et al.,
2010). The secondary xylem is produced from the vascular cambium in a
succession of steps (Smirnov, 1964; Antonova et al., 1983; Antonova and
Stasova, 1988; Rathgeber et al., 2016), controlled by exogenous and
endogenous factors during the growing season (Hsiao and Acevedo,
1974). In conifers, up to 90 % of the xylem is constituted by tracheids
(Vaganov et al., 2006; Hacke et al., 2015). Thus, dendroanatomy allows
to evaluate the spatial arrangement of cell profiles or tracheidograms
within dated tree rings (Vaganov, 1990) and its links with function and
environment (Vaganov et al., 1990; De Micco et al., 2019) over time.

The popularity of dendroanatomy is proliferating worldwide, thanks
to the improvement in anatomical preparation techniques and the evo-
lution of high-resolution image acquisition and measurement systems
(von Arx et al., 2016). However, Russian dendrochronologists have been
working on descriptive and morphological wood anatomy since the
second half of the 20th century, with pioneering studies in the devel-
opment of techniques and methodologies (e.g., Moskaleva, 1958;
Melekhov, 1979; Vaganov et al., 1983, 1985, 1990) to evaluate the
response of wood anatomical traits to environmental factors. During this
time, Russian dendrochronologists have adopted specific methods (e.g.,
staining of forming wood, quantification of cell anatomy, comparison of
annual rings with tracheidograms) and developed the
Vaganov-Shashkin model (VS-model) to simulate ring growth and
structure. Many of these technical advances have been exported
worldwide and contribute to the development of dendroanatomy.

Unfortunately, most of these early studies were published in Russian
and are still poorly known by the international community due to their
difficult access. This work aims to provide an overview of the den-
droanatomical studies carried out in Russia, from the pioneering to most
recent studies, by showing the evolution of the most common method-
ologies used in sample preparation and measuring, and the development
of new tools and approaches over the last seventy years without
forgetting the limitations Russian scientist faced in pioneer studies due
to the poor development of dendroanatomy at that time. We also sum-
marize some of the main results obtained in the field during the last
decades and provide a prospect for future research in Russia.

2. Evolution in methodology

The evolution of dendroanatomy in Russia has followed a series of

! In this review, we consider QWA as the study of wood anatomical traits
adopting quantitative metrics (e.g., xylogenesis), whereas dendroanatomy
when year-to-year variations of anatomical traits are considered, for example,
with time series (e.g., chronologies of anatomical traits).
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steps linked to the focus of research, which has been changing over time,
from the description of tree-ring growth and wood formation and its
relation to the environmental conditions, to the modeling of wood for-
mation and process that controls it. In this section, we focus on the
specific methodologies used or developed by the Russian community
which has contributed to the current state of dendroanatomy
worldwide.

2.1. Sample preparation

The methodology of sample preparation for dendroanatomical
studies in Russia has continuously evolved as for the rest of the world.
Although in recent times, thin anatomical preparations are sectioned,
stained and fixed following internationally accepted protocols (e.g.,
Rossi et al., 2006; Gartner and Schweingruber, 2013; Schneider and
Gartner, 2013; von Arx et al., 2016), Russian pioneer studies differed in
this methodology due to the limited knowledge and available technol-
ogy at that time, pushing the Russian scientist to explore different ways
in order to conduct their research and develop forward the den-
droanatomy. Thus, for example, instead of sections thinner than 15 pm
commonly obtained in the present time using a sliding or rotary
microtome and disposable blades, previously, thin sections (20-30 pm
thick) were prepared with a well-sharpened knife and a sliding micro-
tome (e.g., Vaganov et al., 2006; Kuzmin et al., 2007; Vaganov et al.,
2010), as for example the MC-2 produced in the USSR. Moreover, when
the optics allowed it, observations and measurements were performed
directly under magnification on polished or flattened (with a micro-
tome) wood surfaces without requiring thin section preparations
(Vaganov, 1996).

Similarly, pioneering studies conducted in the mid-20th century
followed different techniques for sample fixation and staining, contrib-
uting to finding the best approaches for sample processing currently
followed. Nowadays, the most common differential staining for thin
sections is, as described by Gartner and Schweingruber (2013), a solu-
tion of Alcian blue (or Astra blue) and safranin for observation and
measurements. However, previously, other staining solutions were
employed. Moskaleva (1958) prepared Pinus sylvestris L. sections by
fixing wood material in ethanol-formalin, then washing and submerging
them into a solution of ethanol, glycerol and water to finally embed
them in celluloid and sectioning with a microtome. The staining of
sections differed for lignified wood and cambium, being lignified wood
stained with a solution of phloroglucinol and sulfuric acid,
chlorin-zinc-iodine, safranin, methylene green or malachite green. In
contrast, samples for cambium development studies were stained with
hematoxylin or ruthenium red. In some cases, sections were submerged
in a ferrous sulfate or acetic copper solution to obtain differential
staining (Moskaleva, 1958). Other staining solutions, such as Nile blue
(Vysotskaya and Vaganov, 1989), cresyl violet (Antonova and Stasova,
1997), or methylene blue (Fonti et al., 2013, 2022), have been or are still
in use. Furthermore, different mountain mediums to fix the anatomical
preparation have been used. Glycerol is the most used (e.g., Babushkina
et al., 2010; Bryukhanova et al., 2013; Darikova et al., 2013), although
Canada balsam (Fonti et al., 2015) and Eukitt (Tabakova et al., 2021) are
replacing the use of glycerol in recent time primarily due to the way in
which sections are digitalized. Thus, all these trials by the Russian
community have contributed with solid experience to the set of stan-
dards protocols currently in use.

In recent times, the Russian community is still in search of new ap-
proaches in order to provide more reliable results for dendroanatomy-
related studies. An example of this continuous search is the proposed
alternative methodology to microtomy, based on embedding-polishing
protocols established for hard tissue preparation (Arzac et al., 2018b).
Although it is not commonly used, in this method, wood samples are
infiltrated and embedded in a transparent and non-reactive resin as
polymethylmethacrylate (PMM), to be then ground and polished to ac-
quire images from stained or unstained polished surfaces of the PMM
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blocks and sections (thinner than 100 um). The technique allows the use
of a wide range of optical methods for observation, including reflected
polarizing microscopy, epifluorescence microscopy, bright-field micro-
scopy with diffuse illumination and circularly polarizing microscopy.

2.2. Cell structure measurements

The techniques for xylem cell traits measurements have evolved
alongside the advances in image digitalization and analysis. Due to the
need of Russian dendroanatomists to understand tree growth year-to-
year, initially, cell structural traits were measured for radial files of
tracheids (from five to eight per ring) from cross-sections using trans-
mitted light microscopy over several consecutive rings (Antonova and
Stasova, 1993, 1997). A researcher generally measured the lumen size
and double cell wall thickness by identifying the boundary between
adjacent cells along a radial file during a linear movement of the mi-
croscope stage (e.g., Vaganov et al., 1983; Vysotskaya et al., 1989).
Since this technique was highly time-consuming, it was automatized at
the Institute of Forest in Krasnoyarsk by interfacing a video camera with
the microscope and connecting it to a computer to improve the accuracy
of data collection and analysis, as well as reducing the time needed to
obtain reliable results (Vaganov et al., 1985). Moreover, during the
1980s and 1990s, to further speed up the process, the measurements
were performed under magnification directly on wood surfaces when
the optics allowed it, avoiding the preparation of anatomical sections
(Vaganov, 1996).

These advances in measuring systems and the recent development in
sample preparation techniques and image digitalization systems (e.g.,
digital cameras, slide scanners) allowed the creation of new specialized
software produced in Russia. For example, Lineyka (Silkin, 2010) and
AutoCellRow (ACR) (Dyachuk et al., 2020) facilitate the semiautomatic
quantification and measurement of different xylem traits (e.g., cell
number, lumen diameter and cell-wall thickness) along individual radial
files of tracheids in single rings, and have been widely used in Russian
studies (e.g., Belokopytova et al., 2020; Vaganov et al., 2020; Babush-
kina et al., 2021; Belousova et al., 2021; Zharkov et al., 2021a), but also
abroad (Rita et al., 2022).

The data from radial files, obtained either via direct observation or
software measurement, has been used for the production of tracheido-
grams, profiles of cell dimensions across individual tree rings, widely
used to evaluate year-to-year variations in cell dimensions and cell wall
thickness over the growing season (e.g., Vaganov, 1990; Panyushkina
etal., 2003; Popkova et al., 2018). However, since tree-ring width varies
yearly, the number of tracheids along radial files also varies within and
between rings (e.g., Vaganov and Terskov, 1977; Vaganov et al., 1979,
1985, 1992). Therefore, the tracheidograms needed to be standardized
to the same number of tracheids to compare measured traits over radial
files between tree rings and different trees (e.g., Vaganov et al., 1985;
Vaganov, 1990). Then, the individually standardized tracheidograms for
each radial file within a ring are averaged to obtain a mean tracheido-
gram for a tree ring (e.g., Vysotskaya et al., 1989; Darikova et al., 2013)
to finally produce “cell chronologies” that are independent of tree-ring
width (Vaganov et al., 1994, 1996). Such an approach allowed the
correlations between time series of external factors (e.g., air tempera-
ture, soil moisture, defoliation, etc.) and cell size and wall thickness
chronologies (Vaganov, 1996). The mean tree-ring tracheidogram data
have also been combined with other tree-ring parameters. For example,
cell structure data were combined with tree-ring density profiles to
produce cell mass chronologies (e.g., Silkin and Kirdyanov, 1999, 2003).

Tracheidograms have also been recently used to describe the dy-
namics of seasonal variability in tracheid properties (Zharkov et al.,
2022). The potential of tracheidograms developed in Russia was
exported abroad and a tracheidogram approach is nowadays helpful also
to automatically organize cells according to their position within the
ring by R packages such as “RAPTOR” (Peters et al., 2018), which allows
to analyze extensive output datasets from specialized software such as
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ROXAS (von Arx and Carrer, 2014).

Depending on the focus of the study, and although most Russian
studies are still based on self-developed methodologies, the use of soft-
ware such as ROXAS by the Russian community is gaining popularity in
recent times in order to measure a broader range of anatomical traits (e.
g., cell number, lumen diameter, cell-wall thickness, theoretical
maximum water conductivity, anatomical wood density, ray paren-
chyma and estimation of carbon accumulation in cells, among others)
over a digitally captured surface of plant tissue (e.g., Fonti et al., 2015;
Sviderskaya et al., 2021; Tabakova et al., 2021; Khotcinskaia et al.,
2023). Nevertheless, it is crucial to highlight that many of the recent
advances in dendroanatomy have a background in the efforts of the
Russian community searching for a better understanding of the mech-
anisms controlling tree growth in boreal environments.

2.3. Tree growth and wood formation modeling

The well-known process-based Vaganov-Shashkin model (VS-
model), widely used to simulate seasonal growth and tree-ring forma-
tion as a function of daily meteorological data (Shashkin and Vaganov,
2000; Vaganov et al., 2006), has been another essential contribution
from Russian scientists to dendrochronology and dendroanatomy. As
inputs, the model requires daily climate records (mean temperature and
total precipitation), site latitude to determine the photoperiod, and an
actual tree-ring width residual chronology to calibrate the simulated
ring growth (Tychkov et al., 2019; Vaganov et al., 2006). As final out-
puts, the model provides values of daily growth rates based on day
length, soil moisture and temperature limitations and an integral growth
rate considering both limiting factors. The accuracy of the model is
based on the wvalues of Pearson’s correlation coefficient, the
Gleichlaufigkeit synchrony and the root mean square error between the
simulated and actual chronologies (Shishov et al., 2016). In addition,
annual estimations of the date for the start (SOS), end (EOS) and length
(LOS) of the growing season are calculated. The SOS is defined when the
daily temperature is equal to or higher than the value of the minimum
temperature required for tree growth (Tmin; 5 °C), and the temperature
sum for the previous ten days reaches some critical level (Tbeg). The
EOS is the last day within a year when the growth rate’s value exceeds
the critical growth rate (Ver), and the temperature sum is no longer
higher or equal to Tbeg. The LOS is estimated as the number of days
between SOS and EOS.

The VS-model has also been a starting point for developing new
models. Thus, for example, a visual parametrization of the VS-model, the
VS-Oscilloscope (Tychkov et al., 2012, 2015; Shishov et al., 2016), has
been commonly used for tree-growth simulations (e.g., Arzac et al.,
2018a, 2021b; Tychkov et al., 2019). An online version of the
VS-oscilloscope also allows the simulation of tree growth without the
requirement of any preinstalled software (http://www.vs-genn.ru/).
Moreover, in recent times, supercomputers may carry out the model’s
parametrization (e.g., Kirdyanov et al., 2020a). In addition, the
devolvement of the monthly resolution version, the VS-lite model
(Tolwinski-Ward et al., 2011), has allowed the tree-growth simulation in
areas where daily climate data is not easily available. Finally, the
VS-Cambium-Developer, based on the cambial block algorithm of the
VS-model, reproduces the process of cambial activity of coniferous
species (Belousova et al., 2021; Shishov et al., 2021; Popkova et al.,
2023).

3. An inventory of the Russian studies

The publications on dendroanatomy in Russia cover a vast
geographical extension (Fig. 1), and the number of published works is
continuously increasing (Fig. 2). The published articles extend to a
broad range of approaches and research topics: quantification of
tracheid number and sizes along radial cell rows and tracheidograms (e.
g., Silkin and Kirdyanov, 2003; Fonti and Babushkina, 2016; Zharkov
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Fig. 1. Distribution of published studies on dendroanatomy within the Russian Federation (also see Supplementary Table Al for further details). Colors represent
different biomes: tundra (blue), lake, rock and ice (cyan), taiga (purple), steppe (yellow), desert (orange), and temperate forest (green).
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Fig. 2. Number of published manuscripts related to dendroanatomy in the last
40 years over the Russian territory grouped in 10-years period (included in the
Supplementary Table A1) and divided by topic (wood formation and den-
droanatomy). The pink bar highlights the number of manuscripts published
in Russian.

et al., 2021a), measurement of multiple of xylem traits (e.g., Fonti et al.,
2015; Belokopytova et al., 2019), seasonal growth studies (e.g., Bryu-
khanova et al., 2013; Kalinina et al., 2019) and modeling of cambial
activity (e.g., Popkova et al., 2020; Shishov et al., 2021), obtaining
density profiles (Silkin et al., 2022). In addition, the influence of
extraordinary and extreme events on cell characteristics has been
studied, including the Tunguska episode in 1908 (Vaganov et al., 2004)
and the incident in the Chernobyl nuclear power station in 1986
(Musaev, 1996). Moreover, several methodological books have been
published, including basics of dendrochronology (e.g., Shiyatov et al.,
2000), seasonal growth dynamics and modeling (e.g., Smirnov, 1964;

Antonova, 1999; Vaganov and Shashkin, 2000; Vaganov et al., 2006)
and anatomy atlas of Russian woody plants (Benkova and Schweing-
ruber, 2004). The supplementary Table Al provides a chronological
overview of studies conducted in Russia since the mid-20th century,
highlighting the relevant contribution of Russian scientists in the
development of the field.

A total of 95 studies (i.e., manuscripts, books and book chapters) on
Russian dendroanatomy published by Russian scientists (Fig. 2) were
considered in this overview, 45 % of them published in Russian and
hardly accessible to the broader international scientific community (in
the supplementary file A2, we have included the first page of the articles
with the most difficult access). However, 91 of them were discussed
either throughout the text or described in the supplementary Table S1 to
avoid redundancy among published material. Furthermore, the majority
of the selected publications (~90 %) focused on wood structure data
from conifers (i.e., Pinus sylvestris L., Pinus sibirica Du Tour, Picea obovata
Ledeb, Larix sibirica Ledeb) and only ~10 % have been conducted on
broadleaved species such as Betula pendula (e.g., Popkova et al., 2018;
Vaganov et al., 2020; Babushkina et al., 2021) and Betula pubescens
Ehrh. (Fonti and Prokushkin, 2021).

Since dendroanatomical studies started to popularize worldwide
during the 2000s due to the improvement in high-resolution image
acquisition and software, here we outline the main Russian de-
velopments and studies published before and after the year 2000 to
provide a better description of the contribution of Russian scientists to
the dendrochronological community. Then, we present results on tree-
ring growth simulation studies based on dendroanatomical data.
Finally, we discuss the further prospects for dendroanatomy in Russia. In
general, the Russian scientific community has provided critical insight
into the factors controlling wood formation in the boreal forests, high-
lighting the shift in limitation from temperature in higher latitudes to
water availability in lower latitudes, leading to the focus on the study of
climate signals in cell anatomical traits and its dependence on envi-
ronmental conditions. This information has been crucial for modeling
the processes controlling wood formation under contrasting environ-
ments, which have resulted in the development of different models by
the global community.
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3.1. Studies published before 2000

The first studies on dendroanatomy in Russia (during the Soviet
Union period), published in the late 1950s-early 1970s, were mainly
focused on the physiological processes of tree-rings growth. The ob-
tained data were subsequently used to model the kinetics of seasonal
growth and the cellular structure of conifer tree rings in different regions
of Russia. Moskaleva (1958) observed tree-ring and early/latewood
tracheid formation of Pinus sylvestris in the Moscow region. Later,
Melekhov (1979) showed that the study of seasonal tree-ring dynamics
in Pinus sylvestris and Pinus nigra helped evaluate and predict climate
conditions in the Western Soviet Union. During the same period, several
efforts were oriented toward identifying the environmental factors
triggering cambial activity, showing the critical role of air temperature
in northern latitudes (Tyrtikov, 1956; Kandelaki, 1979). In addition,
methodological papers (e.g., calculation of tree growth indices; Shiya-
tov, 1970) and book chapters related to basic principles and methods in
dendrochronology (Shiyatov, 1973) were published.

During the 1980s, a novel approach was proposed to quantitatively
describe intra- and inter-annual variability of tree-ring cell structure
parameters using tracheidograms and “cell chronologies” (e.g., Vaganov
et al., 1985; Vysotskaya. et al., 1985; Vaganov, 1990), finding that
tracheids number and size depend on the duration of their formation
(Antonova et al., 1983) and its dependence on water availability in
lower latitudes (Vaganov et al., 1985). Then, in the early1990s, a sea-
sonal tree-ring growth simulation model was developed, and simulated
tracheidograms were compared to tree-ring cell structure measurements
in pine from central Siberia (Vaganov et al., 1990, 1994; Fritts et al.,
1991). Results showed that using a simulation model effectively cap-
tures the main meteorological factors influencing the seasonal rate of
tracheid production and their sizes (Vaganov et al., 1992). At the same
time, it revealed the limitations of the standard statistical approaches,
based on response function and multiple regression, to quantify the in-
fluence of climate on tree growth (Vaganov et al., 1994).

The effect of temperature on different phases of xylogenesis and
accumulation of cell wall biomass, with early and latewood cells form-
ing at different time windows, was shown in trees growing in the forest-
steppe ecosystems in southcentral Siberia (e.g., Antonova and Stasova,
1993, 1997) and temperature-limited forest-tundra in Russian subarctic
(e.g., Vaganov et al., 1996, 1999; Silkin and Kirdyanov, 1999).
Furthermore, the optimal temperature and precipitation values for cell
production, radial expansion of cells, and thickening of the secondary
wall were identified for forest-steppe conditions in Siberia. These
optimal values were similar for cell production and expansion while
significantly differed between sites for the secondary wall thickening
phase, where dependence on seasonal growth temperature was observed
(Antonova et al., 1995; Antonova and Stasova, 1997).

In the earlier stages of dendroanatomy in Russia, a couple of books
related to the study of the process of seasonal growth (Smirnov, 1964)
and xylem formation (Antonova, 1999) were published, including an
overview of the effect of different climate conditions on conifers growth.

3.2. Studies published after 2000

After the year 2000, the field of Russian dendroanatomy has been
rapidly expanding (Fig. 2), with about 67 studies been published.
Moreover, several books have been released, such as “Anatomy of
Russian Woods” (Benkova and Schweingruber, 2004), an illustrated
atlas describing the anatomy of 333 Russian species. “Growth and
structure of growth rings of conifers” (Vaganov and Shashkin, 2000) and
“Growth Dynamics of Conifer Tree Rings Images of Past and Future
Environments” (Vaganov et al., 2006), where tree growth and cell
production are considered and the process-based VS-model is described.
During this period, it has been shown how climate conditions affect
tree-ring formation and their cell structure, which determine the hy-
draulic and mechanical properties of the xylem, including the use of
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conifers tree-ring parameters as proxies for climate reconstructions
(Hantemirov et al., 2000; Babushkina et al., 2003; Sidorova et al., 2012;
Churakova et al., 2019; Biintgen et al., 2022).

Thus, cell parameters allowed for obtaining additional detailed in-
formation about climate variations during the growing season and
identifying the “key” intervals of the season affecting tree radial growth
and structure (e.g., Kirdyanov et al., 2003; Benkova and Benkova, 2006;
Vaganov et al., 2006; Kuzmin et al., 2007, 2011; Babushkina et al.,
2010). This becomes especially important for the permafrost zone
considering its possible degradation (e.g., Blokhina et al., 2012; Bryu-
khanova and Kirdyanov, 2014; Fonti et al., 2018, 2021; Mashukov et al.,
2021a). Tracheidograms were used to evaluate the variability of the
anatomical characteristics of annual rings formed in graft and rootstock
stems (Vaganov et al., 2010). It was demonstrated that tracheidograms
of coniferous are an indirect but effective tool for assessing the seasonal
influence of internal and external factors on tree growth (e.g., Arzac
et al., 2018b; Kalinina et al., 2019; Belokopytova et al., 2020; Babush-
kina et al., 2021). Furthermore, it has also been proven that climate
conditions can significantly affect the formation of rings and their
structure, which determines xylem hydraulic and mechanical properties
(Fonti et al., 2013; Bryukhanova and Kirdyanov, 2014). A significant
outcome proved that, over the last 20 years, annual rings in certain
environments had undergone some anatomical changes, such as the
thinning of cell walls (e.g., Antonova et al., 2017; Camarero et al., 2017;)
and disturbed ray tracheids (e.g., Belokopytova et al., 2019; Mashukov
etal., 2021a), highlighting the effect of environmental conditions on the
structure-function relationship of the secondary xylem (Bryukhanova
et al., 2014). Recently, other xylem traits, such as ray parenchyma, have
been studied, suggesting that their formation may be linked to climate
depending on the species (Fonti et al., 2015; Tabakova et al., 2021).

Special attention was also paid to the study of different zones of the
tree ring, between early and latewood (Sviderskaya et al., 2011;
Babushkina et al., 2019) and its relationship with the number of cells
within each zone (Fakhrutdinova et al., 2017) and climate (Fonti and
Babushkina, 2016; Belokopytova et al., 2019, 2020; Popkova et al.,
2020). As well, since the 2000s, several seasonal growth studies have
also been conducted, determining the importance of environmental
factors (Ostroshenko, 2002; Babushkina et al., 2010; Kalinina et al.,
2019) and tree age (Kishchenko, 2014) as limiting factors of tree growth,
as well as the start, end and length of the growing season of conifer
species (Tishin et al., 2017; Matveev et al., 2020; Zharkov et al., 2021b),
and the formation duration of each tree-ring zone within the ring
(Bryukhanova et al., 2013). In addition, a recent study based on seasonal
growth and in situ monitoring of ecophysiological processes has shown
the mechanism of tree decay due to the symbiosis of pine bark beetles
and ophiostomatoid fungi in Central Siberia (Barchenkov et al., 2023).

3.3. Modeling

The process-based Vaganov-Shashkin model, originally developed to
simulate tree growth under different environments (Shashkin and
Vaganov, 2000; Vaganov et al., 2006), has been widely used to under-
stand the main limitations of tree growth as well as temporal changes in
these limitations and phenology under contrasting conditions (e.g.,
Vaganov et al., 2011; Tychkov et al., 2012; Arzac et al., 2021b; Fonti
et al., 2021; Babushkina et al., 2022; Shishov et al., 2023). However, it
was recently provided the basis to describe the process beyond tree
growth limitations, explain seasonal cambium development, and esti-
mate tree-ring cell production (Shishov et al., 2021; Popkova et al.,
2023). Thus, based on dendroanatomical data, the simulations of cam-
bium development reproduce the process of cambial activity in conifers
based on the hypothesis of the presence of a cytoplasmic inhibitor for
cell differentiation, the functioning of which is limited by temperature,
moisture, and light (Belousova et al., 2021). Moreover, the VS-model has
also been applied to generate synthetic tracheidograms and test its
applicability to study the formation of intra-annual density fluctuations
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(Popkova et al., 2018), one of the most frequent climatic markers of tree
rings in drought-prone areas as southern Siberia (e.g., Arzac et al.,
2021a). Recently, dendroanatomical data were used in a new model to
assess how tracheids of different sizes can contribute to the hydraulic
properties of tree rings (Sviderskaya et al., 2021). Thus, in recent years
the VS-model has been widely used beyond its original conceptualiza-
tion to be applied to dendroanatomy-related studies.

4. Future perspectives for dendroanatomy in Russia

Almost 50 % of Russia, the world’s largest country, is forested (FAO
and UNEP, 2020), with several tree species inhabiting extensive areas
within different climatic zones, from the subtropics to the Arctic. The
use of dendroanatomy was proven to be an effective tool for assessing
the climate impact on tree radial growth under different conditions. This
approach can be effectively applied in Russia in trees growing along a
wide range of climatic gradients and extended geographical transects (e.
g., latitudinal, longitudinal, altitudinal), where it can reveal changes in
the wood structure of trees as an adaptation across climatic and envi-
ronmental gradients. This becomes especially relevant considering that
the projected climate changes may exceed the threshold when tree
species are able to adapt to a rapidly changing environment, with sig-
nificant potential consequences on the structure, age, and composition
of forests and, in turn, on forests’ contribution to global carbon uptake.
For these reasons, it is essential to continue investigating the influence of
environmental conditions on tree growth and wood structure in order to
better understand the response of trees to environmental changes.

Unfavorable environmental conditions that affect physiological
processes reduce the growth of a tree. For example, water deficiency
inhibits growth, as the tree closes the stomata, reduces the intensity of
photosynthesis, stops cell growth, and creates other unfavorable con-
ditions inside the tree, which can be tracked using dendroanatomy.
Future research should focus on the relationship between function and
structure, such as mechanical conductivity and structural support, to
understand how these functionalities may be affected by ongoing
climate change. In addition, the study using dendroanatomy of different
tree species with different stem architecture or the same species growing
in different climatic conditions will take a huge step ahead in under-
standing wood functions.

The combination of several disciplines, such as dendrochronology,
dendroanatomy and modeling, with tools such as remote sensing and/or
on-site study of tree response (e.g., monitoring of seasonal growth, sap
flow measurements, Etc.), will contribute more effectively to the forest
management decisions in the face of climate change.

5. Conclusions

Russians dendroanatomists, in the search for the understanding the
intra-annual dynamics of tree-ring growth, have been pioneers in the
development of methodologies and software (e.g., staining, measure-
ments, modeling), many of which have been exported worldwide and
contributed to the development of dendroanatomy. This review pre-
sented an overview of dendroanatomy-related studies published by
Russian scientists over the last 70 years, including a total of 43 manu-
scripts published in Russian, hardly accessible to the broader interna-
tional scientific community. Besides providing an overview related to
the new methodologies proposed, here we highlighted the critical
contribution of Russian investigations for the dendroanatomy of boreal
ecosystems. All these researches targeted a wide spectrum of topics:
from the study of the environmental effect on the wood structure and
cell anatomy (i.e., the shift of limiting factors of tree growth and wood
formation, from temperature limitation in the north to water limitation
in the south), to wood formation monitoring (i.e., timing of cell pro-
ductions, growing season length) or the modeling of the process (i.e.,
cell production, simulation of tracheidograms) which controls wood
formation under different environmental conditions. It is important to
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remember and recognize that many of these studies partially set the
basis for the current state of dendroanatomy worldwide.
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